Periods

-Each row is called a "period"
-The elements in each period have the same number of shells

$1^{\text {st }}$ Period $=1$ Shell $2^{\text {nd }}$ Period $=2$ Shells $3^{\text {rd }}$ Period $=3$ Shells $4^{\text {th }}$ Period $=4$ Shells

Increasing atomic mass as you go across the periods left to right

\&
increasing atomic mass as you down the groups.

NOTE:

- Each PERIOD has the same number of electrons shells.
- Each GROUP has the same \# of outer valence electrons.

	Group IA	Group 2A						Group 8A
Period I I shell	Hydrogen H		Group 3A	Group 4A	Group 5A	Group 6A	Group 7A	Helium He
Period 2 2 thells	Lithium Li	Beryllum Be	Boron B	Carbon C	Nitrogen \mathbb{N}		Fluorine F	Neon Ne
Period 3 3 shells			 Aluminum A		Phosphorus P		 Chlorine Cl	$\frac{(8)}{\mathrm{Argon}_{\mathrm{Ar}}^{2}}$
Period 4 4 shells				Germanium Ge				

Determine the number of shells and the number of valence electrons for:

Carbon - C

$2^{\text {nd }}$ Period $=2$ shells

$4^{\text {th }}$ Group $=$ 4 valence electrons

Determine the number of shells and the number of valence electrons for:

Sodium - Na

$3^{\text {rd }}$ Period $=3$ shells

$1^{\text {st }}$ Group $=$
1 valence electron

Write your answers on your handout.

 NeName the element. Number of shells ?
Valence electrons?

Write your answers on your handout.

 NeName the element. Number of shells ?
Valence electrons?

©

Neon
$2^{\text {nd }}$ Period $=2$ shells
$8^{\text {th }}$ Group $=8$ valence electrons

Write your answers on your handout. H

Name the element. Number of shells?
Valence electrons?

Write your answers on your handout.

H

Name the element. Number of shells ?
Valence electrons?

Hydrogen
$1^{\text {st }}$ Period $=1$ shell
$1^{\text {st }}$ Group $=1$ valence electron

Write your answers on your handout.

Be

Name the element. Number of shells ?
Valence electrons?

Write your answers on your handout.

Be

Name the element. Number of shells ?
Valence electrons?

Beryllium
$2^{\text {nd }}$ Period $=2$ shells
$2^{\text {nd }}$ Group $=2$ valence electrons

Write your answers on your handout.

He

Name the element. Number of shells?
Valence electrons?

Write your answers on your handout.

 HeName the element. Number of shells?
Valence electrons?

Helium
 $1^{\text {st }}$ Period $=1$ shell
 $8^{\text {th }}$ Group $=2$ valence electrons

- Helium is the exception in Group 8.
- Since it has just one shell, that shell can only fit 2 electrons instead of 8.
- It is in this group because all the elements have a full outer shell.

- How many valence electrons?
- What group is this element in?

Period?

- How many valence electrons?
- What group is this element in?

Period?

- How many valence electrons?
- What group is this element in? Period?

- How many valence electrons?
- What group is this element in?

Period?

- How many valence electrons?
- What group is this element in?

Period?

What does it mean to be reactive?

Elements that are reactive bond easily with other elements to make compounds.

What makes an element reactive?

■An incomplete valence electron level.
-All atoms (except hydrogen and helium) want to have 8 electrons in their very outermost energy level (This is called the rule of octet.)
-Atoms bond until this level is complete. Atoms with few valence electrons lose them during bonding. Atoms with 6,7 , or 8 valence electrons gain electrons during bonding.

Valence Electrons

- Valence electrons are the electrons in the outer energy level of an atom.
- These are the electrons that are transferred or shared when atoms bond together.

Sodium

Chlorine

1 valence electron

7 valence electrons

Sodium

Chlorine

Sodium loses one electron. Chlorine gains one electron.

Sodium Chloride

See next slide

Your notes:
filled in Periodic Table should look something like this.

